IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-58038-3_2.html
   My bibliography  Save this book chapter

Algebren

In: Algebra II

Author

Listed:
  • B. L. van der Waerden

Abstract

Zusammenfassung Ein Ring U, der gleichzeitig ein endlich-dimensionaler Vektorraum über einem Körper P ist und die Bedingung $$\begin{array}{*{20}{c}} {(\alpha u)v = u(\alpha v) = \alpha (uv)}&{f\ddot ur}&{\alpha \in P} \end{array}$$ erfüllt, heißt eine assoziative Algebraoder ein hyperkomplexes System über P. Läßt man die Forderung der Assoziativität fallen, so erhält man den allgemeineren Begriff einer (linearen) Algebra.Unter den nicht assoziativen Algebren sind zwei Arten besonders hervorzuheben: 1. Alternativringe, in denen die folgenden eingeschränkten Assoziativgesetze gelten: $$ \begin{gathered} a\left( {ab} \right) = \left( {aa} \right)b, \hfill \\ b\left( {aa} \right) = \left( {ba} \right)a. \hfill \\ \end{gathered} $$ Das älteste Beispiel eines echten Alternativringes ist die Algebra der Oktaven von Cayley; siehe darüber M. Zorn: Alternativkörper und quadratische Systeme. Abh. math. Sem. Univ. Hamburg 9 (1933), S. 395. Die Alternativringe sind für die Axiomatik der ebenen Geometrie wichtig1. Für neuere Untersuchungen siehe R. D. Schafer: Structure and representation of non-associative algebras. Bull. Amer. math. Soc. 61 (1955), p. 469. 2. Liesche Ringe, in denen die folgenden Rechenregeln gelten: $$ \begin{gathered} ab + ba = 0, \hfill \\ a \cdot bc + b \cdot ca + c \cdot ab = 0. \hfill \\ \end{gathered} $$

Suggested Citation

  • B. L. van der Waerden, 1993. "Algebren," Springer Books, in: Algebra II, edition 0, chapter 0, pages 33-78, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-58038-3_2
    DOI: 10.1007/978-3-642-58038-3_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-58038-3_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.