IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-57338-5_14.html
   My bibliography  Save this book chapter

Robust PCA for High-dimensional Data

In: Developments in Robust Statistics

Author

Listed:
  • M. Hubert

    (Catholic University of Leuven, Department of Mathematics)

  • P. J. Rousseeuw

    (University of Antwerp (UIA), Department of Mathematics and Computer Science)

  • S. Verboven

    (University of Antwerp (UIA), Department of Mathematics and Computer Science)

Abstract

Summary Principal component analysis (PCA) is a well-known technique for dimension reduction. Classical PCA is based on the empirical mean and covariance matrix of the data, and hence is strongly affected by outlying observations. Therefore, there is a huge need for robust PCA. When the original number of variables is small enough, and in particular smaller than the number of observations, it is known that one can apply a robust estimator of multivariate location and scatter and compute the eigenvectors of the scatter matrix. The other situation, where there are many variables (often even more variables than observations), has received less attention in the robustness literature. We will compare two robust methods for this situation. The first one is based on projection pursuit (Li and Chen, 1985; Rousseeuw and Croux, 1993; Croux and Ruiz-Gazen, 1996, 2000; Hubert et al., 2002). The second method is a new proposal, which combines the notion of outlyingness (Stahel, 1981; Donoho, 1982) with the FAST-MCD algorithm (Rousseeuw and Van Driessen, 1999). The performance and the robustness of these two methods are compared through a simulation study. We also illustrate the new method on a chemometrical data set.

Suggested Citation

  • M. Hubert & P. J. Rousseeuw & S. Verboven, 2003. "Robust PCA for High-dimensional Data," Springer Books, in: Rudolf Dutter & Peter Filzmoser & Ursula Gather & Peter J. Rousseeuw (ed.), Developments in Robust Statistics, pages 169-179, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-57338-5_14
    DOI: 10.1007/978-3-642-57338-5_14
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-57338-5_14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.