IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-57201-2_3.html

On a Description of Irreducible Component in the Set of Nilpotent Leibniz Algebras Containing the Algebra of Maximal Nilindex, and Classification of Graded Filiform Leibniz Algebras

In: Computer Algebra in Scientific Computing

Author

Listed:
  • Sh. A. Ayupov

    (Samarkand State University)

  • B. A. Omirov

    (Samarkand State University)

Abstract

This paper is devoted to the study of Leibniz algebras introduced by Loday in [1-2] as an analogue of zero ”noncommutative” Lie algebras. We define the notion of zero-filiform Leibniz algebras and study their properties. There is a notion of p-filiform Lie algebras for p≥ 1 [3], which loses a sense in case p = 0, since Lie algebra has at least two generators. In the case of Leibniz algebras for p = 0 this notion substantial, and thereby, introduction of a zero-filiform algebra is quite natural. We also investigate the complex non-Lie filiform Leibniz algebras. In particular, we give some equivalent conditions of filiformity of Leibniz algebras and describe complex Leibniz algebras, which were graded in natural way.

Suggested Citation

  • Sh. A. Ayupov & B. A. Omirov, 2000. "On a Description of Irreducible Component in the Set of Nilpotent Leibniz Algebras Containing the Algebra of Maximal Nilindex, and Classification of Graded Filiform Leibniz Algebras," Springer Books, in: Victor G. Ganzha & Ernst W. Mayr & Evgenii V. Vorozhtsov (ed.), Computer Algebra in Scientific Computing, pages 21-34, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-57201-2_3
    DOI: 10.1007/978-3-642-57201-2_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-57201-2_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.