IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-55925-9_38.html
   My bibliography  Save this book chapter

Symmetric Decreasing Rearrangement Can Be Discontinuous

In: Inequalities

Author

Listed:
  • Frederick J. Almgren Jr.

    (Princeton University, Departments of Mathematics and Physics)

  • Elliott H. Lieb

    (Princeton University, Departments of Mathematics and Physics)

Abstract

Suppose f(xl,x2) ≥ 0 is a continuously differentiable function supported in the unit disk in the plane. Its symmetric decreasing rearrangement is the rotationally invariant function f*(xl,x2) whose level sets are circles enclosing the same area as the level sets of f. Such rearrangement preserves Lp norms but decreases convex gradient integrals, e.g. ||∇||*||p ≤ ||∇/||p (1 ≤ p 0 (j = 1,2,3,…) is a sequence of infinitely differentiable functions also supported in the unit disk which converge uniformly together with first derivatives to f. The symmetzed functions also converge uniformly. The real question is about convergence of the derivatives of the symmetrized functions. We announce that the derivatives of the symmetrized functions need not converge strongly, e.g. it can happen that ||∇fj*—∇f*||p →* 0 for every p. We further characterize exactly those f’s for which convergence is assured and for which it can fail

Suggested Citation

  • Frederick J. Almgren Jr. & Elliott H. Lieb, 2002. "Symmetric Decreasing Rearrangement Can Be Discontinuous," Springer Books, in: Michael Loss & Mary Beth Ruskai (ed.), Inequalities, pages 479-482, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-55925-9_38
    DOI: 10.1007/978-3-642-55925-9_38
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-55925-9_38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.