Author
Listed:
- Klaus Kirchgässner
(Mathematisches Institut A, Universität Stuttgart)
- Som Deo Sharma
(Gerhard-Mercator-Universität Duisburg, Institut für Schiffstechnik)
- Xue-Nong Chen
(VBD-Europäisches Entwicklungszentrum für Binnen- und Küstenschiffahrt)
- Norbert Stuntz
(Mathematisches Institut A, Universität Stuttgart)
Abstract
Using a nonlinear shallow-water solitary-wave theory it was demonstrated that for a ship moving at supercritical speed along the centerline of a rectangular channel, if the hull sectional-area curve is of a special form determined by the solution of an oblique double-soliton interaction and the channel width is chosen to ensure complete wave cancelation through sidewall reflection, the ship waves can be made to form a purely localized pattern around the ship so that its wave resistance, which results only from far-field free waves, theoretically vanishes. To get rid of the crucial dependence on impractical sidewall reflection, this mechanism was developed further to obtain a novel catamaran comprising twin hulls with curved centerlines, yaw and skegs; it has theoretically zero wave-resistance at a chosen supercritical design speed in laterally unrestricted shallow water. Despite certain deviations from the ideal form for practical reasons, the wave-resistance of the new curved-yawed-hull catamaran with and without skeg was numerically found to be less than that of an equivalent straight-unyawed-hull catamaran by 50 and 30%, respectively. Now, the new design, albeit without skeg, has been validated by model experiment and comparison with a state-of-the-art reference catamaran of equal main dimensions that was developed and tested earlier in the VBD. Up to 28% wave-resistance reduction was achieved in the experiment, although not in the originally designed configuration but at a reduced yaw angle found by trial and error.
Suggested Citation
Klaus Kirchgässner & Som Deo Sharma & Xue-Nong Chen & Norbert Stuntz, 2003.
"Theoretical and Experimental Studies of an S-Catamaran,"
Springer Books, in: Willi Jäger & Hans-Joachim Krebs (ed.), Mathematics — Key Technology for the Future, pages 103-124,
Springer.
Handle:
RePEc:spr:sprchp:978-3-642-55753-8_9
DOI: 10.1007/978-3-642-55753-8_9
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-55753-8_9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.