IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-54551-1_96.html
   My bibliography  Save this book chapter

Strategies in Adjoint Tomography

In: Handbook of Geomathematics

Author

Listed:
  • Yang Luo

    (Princeton University, Department of Geosciences)

  • Ryan Modrak

    (Princeton University, Department of Geosciences)

  • Jeroen Tromp

    (Princeton University, Program in Applied & Computational Mathematics)

Abstract

We investigate issues of convergence, resolution, and nonlinearity related to the feasibility of adjoint tomography in regional and global tomography and exploration geophysics. Most current methods of adjoint tomography, whether based on adjoint methods or other formulations, suffer from slow convergence in that only the gradient (not the Hessian) is readily available for computing model updates. As an alternative to working with the unpreconditioned gradients, we examine the speed-up offered by various preconditioners that can be computed in the framework of adjoint methods. We show that each preconditioner bears some similarity to the Hessian, thus motivating and justifying its use for accelerating convergence. Next, we examine the role of the Hessian in resolution analysis. Recalling that the action of the Hessian on an arbitrary model perturbation relates to the classical point spread function concept, we introduce a scalar quantity termed the average eigenvalue that provides a good overall representation of resolution. Whereas a point-spread function reveals the orientation of misfit contours, the average eigenvalue describes the sharpness of the misfit function along the direction of the chosen model perturbation. Finally, we provide an example in which we directly compare the results of travel time and waveform tomography, illustrating the resolution limits of the former and the nonlinearity pitfalls of the latter.

Suggested Citation

  • Yang Luo & Ryan Modrak & Jeroen Tromp, 2015. "Strategies in Adjoint Tomography," Springer Books, in: Willi Freeden & M. Zuhair Nashed & Thomas Sonar (ed.), Handbook of Geomathematics, edition 2, pages 1943-2001, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-54551-1_96
    DOI: 10.1007/978-3-642-54551-1_96
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-54551-1_96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.