IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-54551-1_9.html
   My bibliography  Save this book chapter

Satellite Gravity Gradiometry (SGG): From Scalar to Tensorial Solution

In: Handbook of Geomathematics

Author

Listed:
  • Willi Freeden

    (University of Kaiserslautern, Geomathematics Group)

  • Michael Schreiner

    (University of Buchs, Institute for Computational Engineering)

Abstract

Satellite gravity gradiometry (SGG) is an ultrasensitive detection technique of the space gravitational gradient (i.e., the Hesse tensor of the Earth’s gravitational potential). In this note, SGG – understood as a spacewise inverse problem of satellite technology – is discussed under three mathematical aspects: First, SGG is considered from potential theoretic point of view as a continuous problem of “harmonic downward continuation.” The space-borne gravity gradients are assumed to be known continuously over the “satellite (orbit) surface”; the purpose is to specify sufficient conditions under which uniqueness and existence can be guaranteed. In a spherical context, mathematical results are outlined by the decomposition of the Hesse matrix in terms of tensor spherical harmonics. Second, the potential theoretic information leads us to a reformulation of the SGG-problem as an ill-posed pseudodifferential equation. Its solution is dealt within classical regularization methods, based on filtering techniques. Third, a very promising method is worked out for developing an immediate interrelation between the Earth’s gravitational potential at the Earth’s surface and the known gravitational tensor.

Suggested Citation

  • Willi Freeden & Michael Schreiner, 2015. "Satellite Gravity Gradiometry (SGG): From Scalar to Tensorial Solution," Springer Books, in: Willi Freeden & M. Zuhair Nashed & Thomas Sonar (ed.), Handbook of Geomathematics, edition 2, pages 339-379, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-54551-1_9
    DOI: 10.1007/978-3-642-54551-1_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-54551-1_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.