IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-54551-1_28.html
   My bibliography  Save this book chapter

Correlation Modeling of the Gravity Field in Classical Geodesy

In: Handbook of Geomathematics

Author

Listed:
  • Christopher Jekeli

    (Ohio State University, Division of Geodetic Science, School of Earth Sciences)

Abstract

The spatial correlation of the Earth’s gravity field is well known and widely utilized in applications of geophysics and physical geodesy. This paper develops the mathematical theory of correlation functions, as well as covariance functions under a statistical interpretation of the field, for functions and processes on the sphere and plane, with formulation of the corresponding power spectral densities in the respective frequency domains and with extensions into the third dimension for harmonic functions. The theory is applied, in particular, to the disturbing gravity potential with consistent relationships of the covariance and power spectral density to any of its spatial derivatives. An analytic model for the covariance function of the disturbing potential is developed for both spherical and planar application, which has analytic forms also for all derivatives in both the spatial and the frequency domains (including the along-track frequency domain). Finally, a method is demonstrated to determine the parameters of this model from empirical regional power spectral densities of the gravity anomaly.

Suggested Citation

  • Christopher Jekeli, 2015. "Correlation Modeling of the Gravity Field in Classical Geodesy," Springer Books, in: Willi Freeden & M. Zuhair Nashed & Thomas Sonar (ed.), Handbook of Geomathematics, edition 2, pages 1807-1844, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-54551-1_28
    DOI: 10.1007/978-3-642-54551-1_28
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-54551-1_28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.