Author
Listed:
- Andreas Meister
(University of Kassel, Department of Mathematics, Work-Group of Analysis and Applied Mathematics)
- Joachim Benz
(University of Kassel, Faculty of Organic Agricultural Sciences, Work-Group Data-Processing and Computer Facilities)
Abstract
From spring to summer period, a large number of lakes are laced with thick layers of algae implicitly representing a serious problem with respect to the fish stock as well as other important organisms and at the end for the complete biological diversity of species. Consequently, the investigation of the cause-and-effect chain represents an important task concerning the protection of the natural environment. Often such situations are enforced by an oversupply of nutrient. As phosphorus is the limiting nutrient element for most of all algae growth processes an advanced knowledge of the phosphorus cycle is essential. In this context the chapter gives a survey on our recent progress in modeling and numerical simulation of plankton spring bloom situations caused by eutrophication via phosphorus accumulation. Due to the underlying processes we employ the shallow water equations as the fluid dynamic part coupled with additional equations describing biogeochemical processes of interest within both the water layer and the sediment. Depending on the model under consideration one is faced with significant requirements like positivity as well as conservativity in the context of stiff source terms. The numerical method used to simulate the dynamic part and the evolution of the phosphorus and different biomass concentrations is based on a second-order finite volume scheme extended by a specific formulation of the modified Patankar approach to satisfy the natural requirements to be unconditionally positivity preserving as well as conservative due to stiff transition terms. Beside a mathematical analysis, several test cases are shown which confirm both the theoretical results and the applicability of the complete numerical scheme. In particular, the flow field and phosphorus dynamics for the West Lake in Hangzhou, China are computed using the previously stated mass and positivity preserving finite volume scheme.
Suggested Citation
Andreas Meister & Joachim Benz, 2015.
"Phosphorus Cycles in Lakes and Rivers: Modeling, Analysis, and Simulation,"
Springer Books, in: Willi Freeden & M. Zuhair Nashed & Thomas Sonar (ed.), Handbook of Geomathematics, edition 2, pages 1387-1416,
Springer.
Handle:
RePEc:spr:sprchp:978-3-642-54551-1_23
DOI: 10.1007/978-3-642-54551-1_23
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-54551-1_23. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.