IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-53291-7_4.html
   My bibliography  Save this book chapter

Das Eigenwertproblem

In: Matrizen

Author

Listed:
  • Rudolf Zurmühl

Abstract

Zusammenfassung Wie in den Abschnitten 11.5 und 12.3 an einigen Beispielen deutlich wurde, wird man bei zahlreichen Aufgaben auf eine Fragestellung geführt, die für die Theorie der Matrizen von der größten Bedeutung geworden und geradezu als das Kernstück dieser Theorie anzusehen ist. Es handelt sich darum, zu einer quadratischen, sonst aber beliebigen (reellen oder komplexen) Matrix A Vektoren r derart zu suchen, daß der mit A transformierte Vektor y = A r dem Ausgangsvektor proportional, also ihm parallel ist: (1) $$\boxed{Ur = \lambda r}$$ mit einem zunächst noch unbestimmten Parameter λ. Ausführlich lautet die Aufgabe (1’) $$\left. \begin{gathered}{a_{11}}{x_1} + {a_{12}}{x_2} + ... + {a_{1n}}{x_n} = {\lambda _{x1}} \hfill \\{a_{21}}{x_1} + {a_{22}}{x_2} + ... + {a_{2n}}{x_n} = {\lambda _{x2}} \hfill \\..................................................... \hfill \\{a_{n1}}{x_1} + {a_{n2}}{x_2} + ... + {a_{nn}}{x_n} = {\lambda _{xn}} \hfill \\\end{gathered} \right\}$$ deren homogener Charakter deutlicher in der Schreibweise (1a) $$\boxed{(U - \lambda C)r = 0}$$ hervortritt. Die Matrix dieses Gleichungssystems, (2) $$U - \lambda C = \left( \begin{gathered}{a_{11}} - \lambda {a_{12}}...{a_{1n}} \hfill \\{a_{21}}{a_{22}} - \lambda ...{a_{2n}} \hfill \\.......................... \hfill \\{a_{n1}}{a_{n2}}...{a_{nn}} - \lambda \hfill \\\end{gathered} \right)$$ wird die charakteristische Matrix der Matrix A genannt. Sie spielt, wie wir bald sehen werden, für die Eigenschaften der A Matrix eine entscheidende Rolle.

Suggested Citation

  • Rudolf Zurmühl, 1958. "Das Eigenwertproblem," Springer Books, in: Matrizen, edition 0, chapter 0, pages 150-226, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-53291-7_4
    DOI: 10.1007/978-3-642-53291-7_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-53291-7_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.