IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-53289-4_21.html
   My bibliography  Save this book chapter

Hauptvektoren. Transformation auf Normalform

In: Matrizen

Author

Listed:
  • Rudolf Zurmühl

Abstract

Zusammenfassung Es bleibt noch die Frage nach der Transformationsmatrix zur Ähnlichkeitstransformation einer beliebigen quadratischen Matrix A auf ihre Normalform zu beantworten. Die Antwort ist leicht für den Fall durchweg linearer Elementarteiler der charakteristischen Matrix. Dabei gibt es zur n-reihigen Matrix auch n linear unabhängige Eigenvektoren x i , deren Matrix 1 $$X = \left( {{x_1},{x_2},...,{x_n}} \right)$$ die gesuchte Transformationsmatrix darstellt ganz ähnlich wie bei der Hauptachsentransformation reeller symmetrischer Matrizen, 15.7. Denn die Eigenwertgleichungen 2 $$A{x_i} = {\lambda _i}{x_i}\;\left( {i = 1,2,...,n} \right)$$ lassen sich mit der Diagonalmatrix L der charakteristischen Zahlen λ i als Elementen zur Matrizengleichung $$AX = XL$$ zusammenfassen, woraus wegen der Nichtsingularität von X die gesuchte Ähnlichkeitstransformation folgt: 3 $${X^{ - 1}}AX = L$$ Der Unterschied gegenüber der Hauptachsentransformation reeller symmetrischer Matrizen besteht lediglich darin, daß die Transformation bei allgemeiner Matrix linearer Elementarteiler nicht mehr orthogonal und im allgemeinen auch nicht mehr reell ist.

Suggested Citation

  • Rudolf Zurmühl, 1950. "Hauptvektoren. Transformation auf Normalform," Springer Books, in: Matrizen, chapter 21, pages 211-226, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-53289-4_21
    DOI: 10.1007/978-3-642-53289-4_21
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-53289-4_21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.