IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-38565-0_5.html
   My bibliography  Save this book chapter

Densities in Unitary Matrix Models

In: Application of Integrable Systems to Phase Transitions

Author

Listed:
  • C. B. Wang

    (Institute of Analysis)

Abstract

The unitary matrix model is another important topic in quantum chromodynamics (QCD) and lattice gauge theory. The Gross-Witten weak and strong coupling densities are the most popular density models in QCD for studying the third-order phase transition problems, which are related to asymptotic freedom and confinement. For the Gross-Witten weak and strong coupling densities and the generalizations to be discussed in this chapter, it should be noted that the densities are defined on the complement of the cuts in the unit circle, and there are two essential singularities, which are different from the Hermitian models. The orthogonal polynomials on the unit circle are applied to study these problems by using the string equation. The recursion formula now becomes the discrete AKNS-ZS system, and the reduction of the eigenvalue density is now based on new linear systems of equations satisfied by the orthogonal polynomials on the unit circle. The integrable systems and string equation discussed in this chapter provide a structure for finding the generalized density models and parameter relations that will be used as the mathematical foundation to investigate the transition problems discussed in next chapter.

Suggested Citation

  • C. B. Wang, 2013. "Densities in Unitary Matrix Models," Springer Books, in: Application of Integrable Systems to Phase Transitions, edition 127, chapter 0, pages 107-130, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-38565-0_5
    DOI: 10.1007/978-3-642-38565-0_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-38565-0_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.