IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-38565-0_3.html
   My bibliography  Save this book chapter

Bifurcation Transitions and Expansions

In: Application of Integrable Systems to Phase Transitions

Author

Listed:
  • C. B. Wang

    (Institute of Analysis)

Abstract

It is believed in matrix model theory that when the eigenvalue density on one interval is split to a new density on two disjoint intervals, a phase transition occurs. The complexity for the mathematical details of this physical phenomenon comes not only from the elliptic integral calculations, but also from the organization of the parameters in the model. Generally, the elliptic integrals do not have simple analytic formulations for discussing the transition. The string equations can be applied to find the critical point for the transition from the parameter bifurcation, and the bifurcation clearly separates the different phases for analyzing the free energy. Based on the expansion method for elliptic integrals, the third-order bifurcation transition for the Hermitian matrix model with a general quartic potential is discussed in this chapter by applying the nonlinear relations obtained from the string equations. The density on multiple disjoint intervals for higher degree potential and the corresponding free energy are discussed in association with the Seiberg-Witten differential. In the symmetric cases for the quartic potential, the third-order phase transitions are explained with explicit formulations of the free energy function.

Suggested Citation

  • C. B. Wang, 2013. "Bifurcation Transitions and Expansions," Springer Books, in: Application of Integrable Systems to Phase Transitions, edition 127, chapter 0, pages 45-74, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-38565-0_3
    DOI: 10.1007/978-3-642-38565-0_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-38565-0_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.