IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-36874-5_10.html
   My bibliography  Save this book chapter

Classical Boundary Layer Problems

In: Algebraic Approaches to Partial Differential Equations

Author

Listed:
  • Xiaoping Xu

    (Academy of Mathematics and System Science, Institute of Mathematics)

Abstract

In 1904 Prandtl observed that, in the flow of a slightly viscous fluid past a body, the frictional effects are confined to a thin layer of fluid adjacent to the surface of the body. Classical unsteady boundary layer equations are fundamental nonlinear partial differential equations in the boundary layer theory of fluid dynamics. In this chapter, we introduce various schemes with multiple parameter functions to solve these equations and obtain many families of new explicit exact solutions with multiple parameter functions. Symmetry transformations are used to simplify our arguments. The moving-frame technique is applied in the three-dimensional case in order to capture the rotational properties of the fluid. In particular, we obtain a family of solutions singular on any moving plane, which may be used to study abrupt high-speed rotating flows. Many other solutions are analytic and related to trigonometric and hyperbolic functions, which reflect various wave characteristics of the fluid. Our solutions may also help engineers to develop more effective algorithms to find physical numerical solutions to practical models.

Suggested Citation

  • Xiaoping Xu, 2013. "Classical Boundary Layer Problems," Springer Books, in: Algebraic Approaches to Partial Differential Equations, edition 127, chapter 0, pages 317-383, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-36874-5_10
    DOI: 10.1007/978-3-642-36874-5_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-36874-5_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.