IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-28821-0_16.html
   My bibliography  Save this book chapter

Topology at a Scale in Metric Spaces

In: Essays in Mathematics and its Applications

Author

Listed:
  • Nat Smale

    (University of Utah, Department of Mathematics)

Abstract

This is an expository article that discusses some developments in joint work with Laurent Bartholdi, Thomas Schick and Steve Smale in [1] and also in [10]. Recently, in various contexts, there has been interest in the topology of certain spaces (even finite data sets) at a “scale”, for example, in reconstruction of manifolds or other spaces from a discrete sample as in [8] and [4], and also in connection with learning theory [9, 11] and [7]. In persistence homology, [3, 5] mathematicians have been computing topological features at a range of scales, to find the fundamental structures of spaces and data sets. See also [2]. In this paper, we will first give an explicit description of homology at a scale, for a compact metric space. We will then describe a Hodge theory for the corresponding cohomology when the space has a Borel probability measure.

Suggested Citation

  • Nat Smale, 2012. "Topology at a Scale in Metric Spaces," Springer Books, in: Panos M. Pardalos & Themistocles M. Rassias (ed.), Essays in Mathematics and its Applications, edition 127, pages 421-430, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-28821-0_16
    DOI: 10.1007/978-3-642-28821-0_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-28821-0_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.