IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-25532-8_3.html
   My bibliography  Save this book chapter

Almost Sure Convergence

In: Asymptotics for Associated Random Variables

Author

Listed:
  • Paulo Eduardo Oliveira

    (University of Coimbra, Department of Mathematics, CMUC)

Abstract

This chapter studies essentially Strong Laws of Large Numbers (SLLN) for associated variables and their applications to the characterization of asymptotics of statistical estimators under associated sampling. It is possible to prove SLLN under fairly general assumptions, but, in order to prove characterizations of convergence rates, a closer care on the control of the covariances, based on the inequalities studied in the previous chapter, is required. Sect. 3.2 handles this kind of results, proving almost optimal convergence rates, that is, convergence rates arbitrarily close to those for independent variables. There exist characterizations of convergence rates based on extensions of the Law of Iterated Logarithm to associated variables. Such results are deferred to Chap. 4 , as their proofs require a few inequalities to be proved there. We include a section on large deviations, a not yet very explored theme under association. Here the assumptions on the decay rate of the covariances are much stronger, a behaviour as found for some other dependence structures. The approach and techniques used in this chapter are adapted in the final section to prove almost sure consistency results for nonparametric density and regression estimators based on associated samples.

Suggested Citation

  • Paulo Eduardo Oliveira, 2012. "Almost Sure Convergence," Springer Books, in: Asymptotics for Associated Random Variables, chapter 0, pages 67-100, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-25532-8_3
    DOI: 10.1007/978-3-642-25532-8_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-25532-8_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.