IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-25295-2_4.html
   My bibliography  Save this book chapter

Constitutive Equations: General Principles

In: Mathematical Modeling for Complex Fluids and Flows

Author

Listed:
  • Michel O. Deville

    (Swiss Federal Institute of Technology, EPFL, Institute of Mechanical Engineering)

  • Thomas B. Gatski

    (CNRS-Université de Poitiers-ENSMA, Institute PPRIME
    Old Dominion University, Center for Coastal Physical Oceanography and Ocean, Earth and Atmospheric Sciences)

Abstract

The general principles of continuous media apply to a large variety of materials. Over the last half-century the development and production of new materials, initially linked to oil derivatives like polymers, but further on to composites, bio-materials, food and drugs, etc. launched the need to describe mathematically the mechanical behavior of those products. The principles of writing relevant constitutive equations were elaborated step by step by generalization of the concepts of mechanics to continua and by a constant interplay between theory and experiments. This lengthy process gave rise to the first nonlinear models that constituted the cornerstone for the development of numerical simulations. The theory of constitutive equations elaborates relations linking the stress tensor to the motion. These constitutive relationships quantify the mechanical behavior of these materials. In this monograph this concept of constitutive equations will also be used, but also extended and adapted to represent the behavior of a turbulent flow. Rivlin (Q Appl Math 15:212–215, 1957) suggested such an analogy between a non-Newtonian fluid and turbulent Newtonian flow over a half-century ago. The analogy was primarily based on the appearance of secondary motions in both the laminar flow of a non-Newtonian fluid and the turbulent flow of a Newtonian fluid in a pipe with elliptical cross-section; whereas, for the laminar flow of a Newtonian fluid the flow is rectilinear. Such behavior is induced through the appearance of normal stress effects, that is, normal stresses associated with the extra-stress of the non-Newtonian fluid in a laminar flow and the turbulent stress of the Newtonian fluid in a turbulent flow.

Suggested Citation

  • Michel O. Deville & Thomas B. Gatski, 2012. "Constitutive Equations: General Principles," Springer Books, in: Mathematical Modeling for Complex Fluids and Flows, chapter 0, pages 69-94, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-25295-2_4
    DOI: 10.1007/978-3-642-25295-2_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-25295-2_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.