IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-22421-8_18.html
   My bibliography  Save this book chapter

The Axiomatic Geometric Approach to Bundles

In: Quantum Field Theory III: Gauge Theory

Author

Listed:
  • Eberhard Zeidler

    (Max Planck Institute for Mathematics in the Sciences)

Abstract

Our strategy is to define the notion of vector bundles and principal bundles in an invariant way by only using geometric properties of manifolds. In order to prove further geometric properties of these manifolds (e.g., curvature or parallel transport), we use the fact that, by definition, these properties do not depend on the choice of local bundle coordinates. Therefore, we can pass to special bundle coordinates. This is the situation of product bundles considered in Sects. 15.1 through 15.3. This way, the general results are immediate consequences of our special results about product bundles. In this chapter, we tacitly assume that all the objects are smooth, that is, they are described by smooth functions with respect to local coordinates.

Suggested Citation

  • Eberhard Zeidler, 2011. "The Axiomatic Geometric Approach to Bundles," Springer Books, in: Quantum Field Theory III: Gauge Theory, chapter 17, pages 875-903, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-22421-8_18
    DOI: 10.1007/978-3-642-22421-8_18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-22421-8_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.