IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-19225-8_1.html
   My bibliography  Save this book chapter

Affine and Projective Space

In: A Royal Road to Algebraic Geometry

Author

Listed:
  • Audun Holme

    (University of Bergen, Department of Mathematics)

Abstract

The historical roots of algebraic geometry lie in the study of curved lines in the plane, or as we would prefer to say today, planar curves. The treatment of modern algebraic geometry offered in the present book takes a starting point which is more general and at the same time more restricted: More general in the sense that we will study geometric objects such as curves and surfaces, say, in spaces of any dimensions, and where the points, including those at infinity, are described by coordinates which are elements of a general field, not just real numbers. More special in the sense that we consider geometric objects defined by polynomial equations in the coordinates of the space in which they lie. Historically the necessity of dealing with points at infinity is one of the reasons why ordinary space had to be completed to projective space by adding points at infinity. In this first chapter we establish these foundations for our subject. The theorem of Desargues is treated in some detail, since it illustrates in a beautiful way the role played by points at infinity, the concept of duality and the interplay between different projective coordinate systems.

Suggested Citation

  • Audun Holme, 2012. "Affine and Projective Space," Springer Books, in: A Royal Road to Algebraic Geometry, chapter 0, pages 3-12, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-19225-8_1
    DOI: 10.1007/978-3-642-19225-8_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-19225-8_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.