IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-18743-8_25.html
   My bibliography  Save this book chapter

Adaptive Quasi-Monte Carlo Integration Based on MISER and VEGAS

In: Monte Carlo and Quasi-Monte Carlo Methods 2002

Author

Listed:
  • Rudolf Schürer

    (University of Salzburg, Department of Mathematics)

Abstract

Summary Quasi-Monte Carlo (QMC) routines are one of the most common techniques for solving integration problems in high dimensions. However, their efficiency degrades if the variation of the integrand is concentrated in small areas of the integration domain. Adaptive algorithms cope with this situation by adjusting the flow of computation based on previous integrand evaluations. We explore ways to modify the Monte Carlo based adaptive algorithms MISER and VEGAS such that low-discrepancy point sets are used instead of random samples. Experimental results show that the proposed algorithms outperform plain QMC as well as the original adaptive integration routine for certain classes of test cases.

Suggested Citation

  • Rudolf Schürer, 2004. "Adaptive Quasi-Monte Carlo Integration Based on MISER and VEGAS," Springer Books, in: Harald Niederreiter (ed.), Monte Carlo and Quasi-Monte Carlo Methods 2002, pages 393-406, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-18743-8_25
    DOI: 10.1007/978-3-642-18743-8_25
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-18743-8_25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.