IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-17286-1_20.html
   My bibliography  Save this book chapter

Cayley-Klein Geometries

In: Perspectives on Projective Geometry

Author

Listed:
  • Jürgen Richter-Gebert

    (TU München, Zentrum Mathematik (M10) LS Geometrie)

Abstract

We started out developing projective geometry for two reasons: It was algebraically nice and it helped us to get rid of the treatment of many special situations that are omnipresent in Euclidean geometry. Then, to express Euclidean geometry in a projective setup, we needed the help of complex numbers, our special points I and J, cross-ratios, and Laguerre’s formula. We now come to another pivot point in our explanations: We will see that our treatment of Euclidean geometry in a projective framework is only a special case of a variety of other reasonable geometries. One might ask what it means to be a geometry in that context. For us it means that there are notions of points, lines, incidence, distances, and angles with a certain reasonable interplay. Besides Euclidean geometry, among those geometries there are quite a few prominent examples, such as hyperbolic geometry, elliptic geometry, and relativistic space-time geometry.

Suggested Citation

  • Jürgen Richter-Gebert, 2011. "Cayley-Klein Geometries," Springer Books, in: Perspectives on Projective Geometry, chapter 20, pages 375-398, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-17286-1_20
    DOI: 10.1007/978-3-642-17286-1_20
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-17286-1_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.