IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-13742-6_12.html
   My bibliography  Save this book chapter

Numerical Inversion Methods in Geoscience and Quantitative Remote Sensing

In: Optimization and Regularization for Computational Inverse Problems and Applications

Author

Listed:
  • Yanfei Wang

    (Chinese Academy of Sciences, Institute of Geology and Geophysics)

  • Xiaowen Li

    (Beijing Normal University, Research Center for Remote Sensing and GIS)

Abstract

To estimate structural parameters and spectral component signatures of Earth surface cover type, quantitative remote sensing seems to be an appropriate way to deal with these problems. Since the real physical system that couples the atmosphere with the land surface is very complicated and should be continuous, sometimes it requires comprehensive parameters to describe such a system, so any practical physical model can only be approximated by a model which includes only a limited number of the most important parameters that capture the major variation of the real system. The pivot problem for quantitative remote sensing is the inversion. Inverse problems are typically ill-posed. The ill-posed nature is characterized by (C1) the solution may not exist; (C2) the dimension of the solution space may be infinite; (C3) the solution is not continuous with the variation of the observed signals. These issues exist for all quantitative remote sensing inverse problems. For example, when sampling is poor, i.e., there are very few observations, or directions are poorly located, the inversion process would be underdetermined, which leads to the large condition number of the normalized systems and the significant noise propagation. Hence (C2) and (C3) would be the chief difficulties for quantitative remote sensing inversion. This chapter will address the theory and methods from the viewpoint that the quantitative remote sensing inverse problems can be represented by kernel-based operator equations.

Suggested Citation

  • Yanfei Wang & Xiaowen Li, 2010. "Numerical Inversion Methods in Geoscience and Quantitative Remote Sensing," Springer Books, in: Yanfei Wang & Changchun Yang & Anatoly G. Yagola (ed.), Optimization and Regularization for Computational Inverse Problems and Applications, chapter 0, pages 273-299, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-13742-6_12
    DOI: 10.1007/978-3-642-13742-6_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-13742-6_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.