IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-13701-3_4.html
   My bibliography  Save this book chapter

Viertes Kapitel. Projektive Geometrie. Axiomatik. Nichteuklidische Geometrien

In: Was ist Mathematik?

Author

Listed:
  • Richard Courant

    (New York University, Courant Institute of Mathematical Sciences)

  • Herbert Robbins

    (Rutgers University, Department of Mathematics)

Abstract

Zusammenfassung Die Geometrie beschäftigt sich mit den Eigenschaften von Figuren in der Ebene oder im Raume. Diese Eigenschaften sind so mannigfaltig und verschiedenartig, daß man ein Klassifizierungsprinzip braucht, um Ordnungin die Fülle der gewonnenen Erkenntnisse zu bringen. So kann man zum Beispiel eine Klassifizierung nach der Methode zur Ableitung der Sätze vomehmen. Von diesem Standpunkt aus macht man oft die Unterscheidung zwischen „synthetischen“ und „analytischen“ Verfahren. Synthetisch ist die klassische axiomatische Methode von Euklid: Der Stoff wird auf rein geometrischer Grundlage entwickelt, unabhängig von der Algebra und dem Begriff des Zahlenkontinuums; die Lehrsätze werden durch logische Schlüsse aus einem Anfangssystem von Aussagen abgeleitet, die man Axiome oder Postulate nennt. Demgegenüber beruht die analytische Methode auf der Einführung numerischer Koordinaten und bedient sich der algebraischen Technik. Diese Methode hat eine tiefgreifende Wandlung in der mathematischen Wissenschaft herbeigeführt, aus der sich eine Zusammenfassung der Geometrie, der Analysis und der Algebra zu einer organischen Einheit ergeben hat.

Suggested Citation

  • Richard Courant & Herbert Robbins, 2001. "Viertes Kapitel. Projektive Geometrie. Axiomatik. Nichteuklidische Geometrien," Springer Books, in: Was ist Mathematik?, pages 130-179, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-13701-3_4
    DOI: 10.1007/978-3-642-13701-3_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-13701-3_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.