IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-11760-2_8.html
   My bibliography  Save this book chapter

Five Steps in Latent Curve and Latent Change Score Modeling with Longitudinal Data

In: Longitudinal Research with Latent Variables

Author

Listed:
  • John J. McArdle

    (University of Southern California, Department of Psychology)

  • Kevin J. Grimm

    (University of California, Davis, Department of Psychology)

Abstract

This paper describes a set of applications of one class of longitudinal growth analysis - latent curve (LCM) and latent change score (LCS) analysis using structural equation modeling (SEM) techniques. These techniques are organized in five sections based on Baltes & Nesselroade (1979). (1) Describing the observed and unobserved longitudinal data. (2) Characterizing the developmental shape of both individuals and groups. (3) Examining the predictors of individual and group differences in developmental shapes. (4) Studying dynamic determinants among variables over time. (5) Studying group differences in dynamic determinants among variables over time. To illustrate all steps, we present SEM analyses of a relatively large set of data from the National Longitudinal Survey of Youth (NLSY). The inclusion of all five aspects of latent curve modeling is not often used in longitudinal analyses, so we discuss why more efforts to include all five are needed in developmental research.

Suggested Citation

  • John J. McArdle & Kevin J. Grimm, 2010. "Five Steps in Latent Curve and Latent Change Score Modeling with Longitudinal Data," Springer Books, in: Kees van Montfort & Johan H.L. Oud & Albert Satorra (ed.), Longitudinal Research with Latent Variables, chapter 0, pages 245-273, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-11760-2_8
    DOI: 10.1007/978-3-642-11760-2_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-11760-2_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.