IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-11760-2_4.html
   My bibliography  Save this book chapter

Longitudinal Research Using Mixture Models

In: Longitudinal Research with Latent Variables

Author

Listed:
  • Jeroen K. Vermunt

    (Tilburg University, Department of Methodology and Statistics)

Abstract

This chapter provides a state-of-the-art overview of the use of mixture and latent class models for the analysis of longitudinal data. It first describes the three basic types mixture models for longitudinal data: the mixture growth, mixture Markov, and latent Markov model. Subsequently, it presents an integrating framework merging various recent developments in software and algorithms, yielding mixture models for longitudinal data that can (1) not only be used with categorical, but also with continuous response variables (as well as combinations of these), (2) be used with very long time series, (3) include covariates (which can be numeric or categorical, as well as time-constant or time-varying), (4) include parameter restrictions yielding interesting measurement models, and (5) deal with missing values (which is very important in longitudinal research). Moreover, it discusses other advanced models, such as latent Markov models with dependent classification errors across time points, mixture growth and latent Markov models with random effects, and latent Markov models for multilevel data and multiple processes. The appendix shows how the presented models can be defined using the Latent GOLD syntax system (Vermunt and Magidson, 2005, 2008).

Suggested Citation

  • Jeroen K. Vermunt, 2010. "Longitudinal Research Using Mixture Models," Springer Books, in: Kees van Montfort & Johan H.L. Oud & Albert Satorra (ed.), Longitudinal Research with Latent Variables, chapter 0, pages 119-152, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-11760-2_4
    DOI: 10.1007/978-3-642-11760-2_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-11760-2_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.