IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-11248-5_5.html
   My bibliography  Save this book chapter

Data Mining for the Category Management in the Retail Market

In: Production Factor Mathematics

Author

Listed:
  • Jochen Garcke

    (TU Berlin, MA 3-3)

  • Michael Griebel

    (Universität Bonn, Institut für Numerische Simulation)

  • Michael Thess

    (Prudsys AG, The Realtime Analytics Company)

Abstract

Worldwide the retail market is under a severe competitive pressure. The retail trade in Germany in particular is internationally recognized as the most competitive market. To survive in this market most retailers use undirected mass marketing extensively. All prospective customers receive the same huge catalogues, countless advertising pamphlets, intrusive speaker announcements and flashy banner ads. In the end the customers are not only annoyed but the response rates of advertising campaigns are dropping for years. To avoid this, an individualization of mass marketing is recommended where customers receive individual offers specific to their needs. The objective is to offer the right customer at the right time for the right price the right product or content. This turns out to be primarily a mathematical problem concerning the areas of statistics, optimization, analysis and numerics. The arising problems of regression, clustering, and optimal control are typically of high dimensions and have huge amounts of data and therefore need new mathematical concepts and algorithms.

Suggested Citation

  • Jochen Garcke & Michael Griebel & Michael Thess, 2010. "Data Mining for the Category Management in the Retail Market," Springer Books, in: Martin Grötschel & Klaus Lucas & Volker Mehrmann (ed.), Production Factor Mathematics, pages 81-92, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-11248-5_5
    DOI: 10.1007/978-3-642-11248-5_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-11248-5_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.