IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-04504-2_8.html
   My bibliography  Save this book chapter

FDS+Evac: An Agent Based Fire Evacuation Model

In: Pedestrian and Evacuation Dynamics 2008

Author

Listed:
  • Timo Korhonen

    (VTT Technical Research Centre of Finland)

  • Simo Hostikka

    (VTT Technical Research Centre of Finland)

  • Simo Heliövaara

    (Helsinki University of Technology, Systems Analysis Laboratory)

  • Harri Ehtamo

    (Helsinki University of Technology, Systems Analysis Laboratory)

Abstract

Summary In this paper, an evacuation simulation method is presented, which is embedded in a CFD based fire modelling programme. The evacuation programme allows the modelling of high crowd density situations and the interaction between evacuation simulations and state-of-the-art fire simulations. The evacuation process is modelled as a quasi-2D system, where autonomous agents simulating the escaping humans are moving according to equations of motion and decision making processes. The space and time, where the agents are moving, is taken to be continuous, but the building geometry is discretized using fine meshes. The model follows each agent individually and each agent has its own personal properties, like mass, walking velocity, familiar doors, etc. The fire and evacuation calculations interact via the smoke and gas concentrations. A reaction function model is used to select the exit routes. The model is compared to other evacuation simulation models using some test simulations.

Suggested Citation

  • Timo Korhonen & Simo Hostikka & Simo Heliövaara & Harri Ehtamo, 2010. "FDS+Evac: An Agent Based Fire Evacuation Model," Springer Books, in: Wolfram W. F. Klingsch & Christian Rogsch & Andreas Schadschneider & Michael Schreckenberg (ed.), Pedestrian and Evacuation Dynamics 2008, pages 109-120, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-04504-2_8
    DOI: 10.1007/978-3-642-04504-2_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-04504-2_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.