Author
Listed:
- Lukas Kellenberger
(University of Applied Sciences Northwestern Switzerland, Institute of 4D Technologies)
- Ruedi Müller
(University of Applied Sciences Northwestern Switzerland, Institute of 4D Technologies)
Abstract
Summary Regarding pedestrian simulation applications, technologies to optimize the built-up environment apart from pure analysis of pedestrian flows, and based on simulation results, are of crucial importance for the wider acceptance of pedestrian simulation. Apart from conventional pedestrian analysis measures such as density maps, flow rates and travel times, optimization of spatial configurations, leading to congestion or travel time reduction, promises an additional benefit for users of the simulation. Spatial optimization therefore delivers specific solutions for the application of pedestrian simulation in general. Here we present a genetic algorithm optimizer module, a prototype created for the pedestrian simulation software SimWalk. Based on CAD plans, the module allows optimizing plans and objects (walls, obstacles, etc.) automatically. The user defines and marks a plan section for optimization where, for example, pedestrian density problems occur. Additionally, the user defines which changes of the built-up environment are allowed, based on boundary conditions predefined by his or her architectural or engineering knowledge. After having defined these boundary conditions, the evolutionary process performed by the genetic algorithm gets started, and a first generation of plans and predefined populations is generated. Every succeeding plan shows random variations of the selected obstacles. To evaluate the fitness of each generation, density maps and travel times generated by the software are used to optimize the selected environment. The ultimate goal consists in finding plan configurations with low densities and shorter travel times. If the first generation is established, the best plans can be identified. Based on “elite selection” (“survival of the fittest”), the next generation then gets started, using various GA operators like random generators, selectors, recombination and mutation to generate new plan variations. Every generation, in optimal cases, results in a better plan configuration. A main topic of the research project consisted in mapping the scalability of plan obstacles to the chromosomes of an already existing GA framework of the research institute. To get trend information during the software development, it was necessary to develop a graphical user interface (GUI). It made it possible to edit and prepare plans for optimization, and additionally to select interim solutions for simulation with different parameters, boundary values, population sizes and operators. Statistical tests have shown that with the existing operator set and favorably chosen parameters, after a few generations a significantly improved plan can be achieved. With this prototype, a first result for the optimization of spatial environments in pedestrian simulation regarding congestion and travel times has been accomplished. Further research will include an extended operator framework to find better results in a shorter time. Additionally, the application workflow will be improved for more intuitive work.
Suggested Citation
Lukas Kellenberger & Ruedi Müller, 2010.
"A Genetic Algorithm Module for Spatial Optimization in Pedestrian Simulation,"
Springer Books, in: Wolfram W. F. Klingsch & Christian Rogsch & Andreas Schadschneider & Michael Schreckenberg (ed.), Pedestrian and Evacuation Dynamics 2008, pages 359-370,
Springer.
Handle:
RePEc:spr:sprchp:978-3-642-04504-2_31
DOI: 10.1007/978-3-642-04504-2_31
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-04504-2_31. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.