IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-04504-2_30.html
   My bibliography  Save this book chapter

Agent-Based Simulation of Evacuation: An Office Building Case Study

In: Pedestrian and Evacuation Dynamics 2008

Author

Listed:
  • Yiqing Lin

    (United Technologies Research Center)

  • Igor Fedchenia

    (United Technologies Research Center)

  • Bob LaBarre

    (United Technologies Research Center)

  • Robert Tomastik

    (Pratt & Whitney)

Abstract

Summary Understanding people behavior and movement characteristics during building evacuation is valuable in evaluating building designs and the effectiveness of evacuation policies. Simulation can be a powerful tool since real data on building evacuation are rarely available and costly to obtain. On the other hand, state-of-the-art in evacuation modeling is the use of agent-based simulations, which are computationally expensive for simulating evacuation in very large buildings. In this paper, we present an agent-based simulation model developed for a 2-story office building verified using the evacuation data collected using video cameras during fire drills in the building. Following model parameter calibration to reflect the actual building traffic characteristics, it is shown that the agent-based simulation model is able to match the real data with high accuracy in terms of the cumulative number of people exiting the building during the evacuation. The paper also presents a graph-based complexity reduction approach that can reduce computation requirements and thus be used for large-scale applications.

Suggested Citation

  • Yiqing Lin & Igor Fedchenia & Bob LaBarre & Robert Tomastik, 2010. "Agent-Based Simulation of Evacuation: An Office Building Case Study," Springer Books, in: Wolfram W. F. Klingsch & Christian Rogsch & Andreas Schadschneider & Michael Schreckenberg (ed.), Pedestrian and Evacuation Dynamics 2008, pages 347-357, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-04504-2_30
    DOI: 10.1007/978-3-642-04504-2_30
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-04504-2_30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.