IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-04504-2_18.html
   My bibliography  Save this book chapter

Prediction and Mitigation of Crush Conditions in Emergency Evacuations

In: Pedestrian and Evacuation Dynamics 2008

Author

Listed:
  • Peter J. Harding

    (Manchester Metropolitan University)

  • Martyn Amos

    (Manchester Metropolitan University)

  • Steve Gwynne

    (Hughes Associates, Inc)

Abstract

Summary Several simulation environments exist for the simulation of large-scale evacuations of buildings, ships, or other enclosed spaces. These offer sophisticated tools for the study of human behaviour, the recreation of environmental factors such as fire or smoke, and the inclusion of architectural or structural features, such as elevators, pillars and exits. Although such simulation environments can provide insights into crowd behaviour, they lack the ability to examine potentially dangerous forces building up within a crowd. These are commonly referred to as crush conditions, and are a common cause of death in emergency evacuations. In this paper, we describe a methodology for the prediction and mitigation of crush conditions. The paper is organised as follows. We first establish the need for such a model, defining the main factors that lead to crush conditions, and describing several exemplar case studies. We then examine current methods for studying crush, and describe their limitations. From this, we develop a three-stage hybrid approach, using a combination of techniques. We conclude with a brief discussion of the potential benefits of our approach.

Suggested Citation

  • Peter J. Harding & Martyn Amos & Steve Gwynne, 2010. "Prediction and Mitigation of Crush Conditions in Emergency Evacuations," Springer Books, in: Wolfram W. F. Klingsch & Christian Rogsch & Andreas Schadschneider & Michael Schreckenberg (ed.), Pedestrian and Evacuation Dynamics 2008, pages 233-246, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-04504-2_18
    DOI: 10.1007/978-3-642-04504-2_18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-04504-2_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.