IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-04107-5_26.html
   My bibliography  Save this book chapter

Automation of Statistical Tests on Randomness to Obtain Clearer Conclusion

In: Monte Carlo and Quasi-Monte Carlo Methods 2008

Author

Listed:
  • Hiroshi Haramoto

    (Kure College of Technology, Department of General Education)

Abstract

Statistical testing of pseudorandom number generators (PRNGs) is indispensable for their evaluation. A common difficulty among statistical tests is how we consider the resulting probability values (p-values). When we observe a small p-value such as 10−3, it is unclear whether it is due to a defect of the PRNG, or merely by chance. At the evaluation stage, we apply some hundred of different statistical tests to a PRNG. Even a good PRNG may produce some suspicious p-values in the results of a battery of tests. This may make the conclusions of the test battery unclear. This paper proposes an adaptive modification of statistical tests: once a suspicious p-value is observed, the adaptive statistical test procedure automatically increases the sample size, and tests the PRNG again. If the p-value is still suspicious, the procedure again increases the size, and re-tests. The procedure stops when the p-value falls either in an acceptable range, or in a clearly rejectable range. We implement such adaptive modifications of some statistical tests, in particular some of those in the Crush battery of TestU01. Experiments show that the evaluation of PRNGs becomes clearer and easier, and the sensitivity of the test is increased, at the cost of additional computation time.

Suggested Citation

  • Hiroshi Haramoto, 2009. "Automation of Statistical Tests on Randomness to Obtain Clearer Conclusion," Springer Books, in: Pierre L' Ecuyer & Art B. Owen (ed.), Monte Carlo and Quasi-Monte Carlo Methods 2008, pages 411-421, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-04107-5_26
    DOI: 10.1007/978-3-642-04107-5_26
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-04107-5_26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.