IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-03479-4_20.html
   My bibliography  Save this book chapter

Maximum Likelihood Estimation for Integrated Diffusion Processes

In: Contemporary Quantitative Finance

Author

Listed:
  • Fernando Baltazar-Larios

    (Universidad Nacional Autónoma de México, Instituto de Investigación en Matemáticas Aplicadas y en Sistemas)

  • Michael Sørensen

    (University of Copenhagen, Department of Mathematical Sciences)

Abstract

We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated by measurement errors. Integrated volatility is an example of this type of observations. Another example is ice-core data on oxygen isotopes used to investigate paleo-temperatures. The data can be viewed as incomplete observations of a model with a tractable likelihood function. Therefore we propose a simulated EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works well.

Suggested Citation

  • Fernando Baltazar-Larios & Michael Sørensen, 2010. "Maximum Likelihood Estimation for Integrated Diffusion Processes," Springer Books, in: Carl Chiarella & Alexander Novikov (ed.), Contemporary Quantitative Finance, pages 407-423, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-03479-4_20
    DOI: 10.1007/978-3-642-03479-4_20
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-03479-4_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.