IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-03413-8_4.html
   My bibliography  Save this book chapter

Adaptive and anisotropic piecewise polynomial approximation

In: Multiscale, Nonlinear and Adaptive Approximation

Author

Listed:
  • Albert Cohen

    (Université Pierre et Marie Curie, Laboratoire Jacques-Louis Lions)

  • Jean-Marie Mirebeau

    (Université Pierre et Marie Curie, Laboratoire Jacques-Louis Lions)

Abstract

We survey the main results of approximation theory for adaptive piecewise polynomial functions. In such methods, the partition on which the piecewise polynomial approximation is defined is not fixed in advance, but adapted to the given function f which is approximated. We focus our discussion on (i) the properties that describe an optimal partition for f, (ii) the smoothness properties of f that govern the rate of convergence of the approximation in the L p -norms, and (iii) fast refinement algorithms that generate near optimal partitions. While these results constitute a fairly established theory in the univariate case and in the multivariate case when dealing with elements of isotropic shape, the approximation theory for adaptive and anisotropic elements is still building up. We put a particular emphasis on some recent results obtained in this direction.

Suggested Citation

  • Albert Cohen & Jean-Marie Mirebeau, 2009. "Adaptive and anisotropic piecewise polynomial approximation," Springer Books, in: Ronald DeVore & Angela Kunoth (ed.), Multiscale, Nonlinear and Adaptive Approximation, pages 75-135, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-03413-8_4
    DOI: 10.1007/978-3-642-03413-8_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-03413-8_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.