IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-03413-8_12.html
   My bibliography  Save this book chapter

Theory of adaptive finite element methods: An introduction

In: Multiscale, Nonlinear and Adaptive Approximation

Author

Listed:
  • Ricardo H. Nochetto

    (University of Maryland, Department of Mathematics and Institute of Physical Science and Technology)

  • Kunibert G. Siebert

    (Universität Duisburg-Essen, Fakultät für Mathematik)

  • Andreas Veeser

    (Università degli Studi di Milano, Dipartimento di Matematica)

Abstract

This is a survey on the theory of adaptive finite element methods (AFEM), which are fundamental in modern computational science and engineering. We present a self-contained and up-to-date discussion of AFEM for linear second order elliptic partial differential equations (PDEs) and dimension d>1, with emphasis on the differences and advantages of AFEM over standard FEM. The material is organized in chapters with problems that extend and complement the theory. We start with the functional framework, inf-sup theory, and Petrov-Galerkin method, which are the basis of FEM. We next address four topics of essence in the theory of AFEM that cannot be found in one single article: mesh refinement by bisection, piecewise polynomial approximation in graded meshes, a posteriori error analysis, and convergence and optimal decay rates of AFEM. The first topic is of geometric and combinatorial nature, and describes bisection as a rather simple and efficient technique to create conforming graded meshes with optimal complexity. The second topic explores the potentials of FEM to compensate singular behavior with local resolution and so reach optimal error decay. This theory, although insightful, is insufficient to deal with PDEs since it relies on knowing the exact solution. The third topic provides the missing link, namely a posteriori error estimators, which hinge exclusively on accessible data: we restrict ourselves to the simplest residual-type estimators and present a complete discussion of upper and lower bounds, along with the concept of oscillation and its critical role. The fourth topic refers to the convergence of adaptive loops and its comparison with quasi-uniform refinement. We first show, under rather modest assumptions on the problem class and AFEM, convergence in the natural norm associated to the variational formulation. We next restrict the problem class to coercive symmetric bilinear forms, and show that AFEM is a contraction for a suitable error notion involving the induced energy norm. This property is then instrumental to prove optimal cardinality of AFEM for a class of singular functions, for which the standard FEM is suboptimal.

Suggested Citation

  • Ricardo H. Nochetto & Kunibert G. Siebert & Andreas Veeser, 2009. "Theory of adaptive finite element methods: An introduction," Springer Books, in: Ronald DeVore & Angela Kunoth (ed.), Multiscale, Nonlinear and Adaptive Approximation, pages 409-542, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-03413-8_12
    DOI: 10.1007/978-3-642-03413-8_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-03413-8_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.