IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-03413-8_10.html
   My bibliography  Save this book chapter

Optimized wavelet preconditioning

In: Multiscale, Nonlinear and Adaptive Approximation

Author

Listed:
  • Angela Kunoth

    (Universität Paderborn, Institut für Mathematik)

Abstract

The numerical solution of linear stationary variational problems involving elliptic partial differential operators usually requires iterative solvers on account of their problem size. Our guiding principle is to devise theoretically and practically efficient iterative solution schemes which are optimal in the number of arithmetic operations, i.e., of linear complexity in the total number of unknowns. For these algorithms, asymptotically optimal preconditioners are indispensable. This article collects the main ingredients for multilevel preconditioners based on wavelets for certain systems of elliptic PDEs with smooth solutions. Specifically, we consider problems from optimal control with distributed or Dirichlet boundary control constrained by elliptic PDEs. Moreover, the wavelet characterization of function space norms will also be used in modelling the control functional, thereby extending the range of applicability over conventional methods. The wavelet preconditioners are optimized for these PDE systems to exhibit small absolute condition numbers and consequently entail absolute low iteration numbers, as numerical experiments show.

Suggested Citation

  • Angela Kunoth, 2009. "Optimized wavelet preconditioning," Springer Books, in: Ronald DeVore & Angela Kunoth (ed.), Multiscale, Nonlinear and Adaptive Approximation, pages 325-378, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-03413-8_10
    DOI: 10.1007/978-3-642-03413-8_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-03413-8_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.