IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-93806-4_22.html
   My bibliography  Save this book chapter

Gröbner Bases for the Distance Distribution of Systematic Codes

In: Gröbner Bases, Coding, and Cryptography

Author

Listed:
  • Eleonora Guerrini

    (University of Trento, Department of Mathematics)

  • Emmanuela Orsini

    (University of Pisa, Department of Mathematics)

  • Ilaria Simonetti

    (University of Milan, Department of Mathematics)

Abstract

Coding theorists have been studying only linear codes, with a few exceptions (Preparata in Inform. Control 13(13):378–400, 1968; Baker et al. in IEEE Trans. on Inf. Th. 29(3):342–345, 1983). This is not surprising, since linear codes have a nice structure, easy to study and leading to efficient implementations. However, it is well-known that some non-linear codes have a higher distance (or a better distance distribution) that any linear code with the same parameters (Preparata in Inform. Control 13(13):378–400, 1968; Pless et al. (eds.) in Handbook of Coding Theory, vols. I, II, North-Holland, Amsterdam, 1998). This translates into a superior decoding performance (Litsyn in Handbook of Coding Theory, vols. I, II, North-Holland, Amsterdam, pp. 463–498, 1998). Systematic non-linear codes are the most studied non-linear codes. We describe a Gröbner bases technique to compute the distance distribution for these codes.

Suggested Citation

  • Eleonora Guerrini & Emmanuela Orsini & Ilaria Simonetti, 2009. "Gröbner Bases for the Distance Distribution of Systematic Codes," Springer Books, in: Massimiliano Sala & Shojiro Sakata & Teo Mora & Carlo Traverso & Ludovic Perret (ed.), Gröbner Bases, Coding, and Cryptography, pages 367-372, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-93806-4_22
    DOI: 10.1007/978-3-540-93806-4_22
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-93806-4_22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.