IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-93806-4_17.html
   My bibliography  Save this book chapter

Block Ciphers: Algebraic Cryptanalysis and Gröbner Bases

In: Gröbner Bases, Coding, and Cryptography

Author

Listed:
  • Carlos Cid

    (University of London, Information Security Group, Royal Holloway)

  • Ralf-Philipp Weinmann

    (University of Luxembourg)

Abstract

Block ciphers are one of the most important classes of cryptographic algorithms in current use. Commonly used to provide confidentiality for transmission and storage of information, they encrypt and decrypt blocks of data according to a secret key. Several recently proposed block ciphers (in particular the AES (Daemen and Rijmen in The Design of Rijndael, Springer, Berlin, 2002)) exhibit a highly algebraic structure: their round transformations are based on simple algebraic operations over a finite field of characteristic 2. This has caused an increasing amount of cryptanalytic attention to be directed to the algebraic properties of these ciphers. Of particular interest is the proposal of the so-called algebraic attacks against block ciphers. In these attacks, a cryptanalyst describes the encryption operation as a large set of multivariate polynomial equations, which—once solved—can be used to recover the secret key. Thus the difficulty of solving these systems of equations is directly related to the cipher’s security. As a result computational algebra is becoming an important tool for the cryptanalysis of block ciphers. In this paper we give an overview of block ciphers design and recall some of the work that has been developed in the area of algebraic cryptanalysis. We also consider a few computational and algebraic techniques that could be used in the analysis of block ciphers and discuss possible directions for future work.

Suggested Citation

  • Carlos Cid & Ralf-Philipp Weinmann, 2009. "Block Ciphers: Algebraic Cryptanalysis and Gröbner Bases," Springer Books, in: Massimiliano Sala & Shojiro Sakata & Teo Mora & Carlo Traverso & Ludovic Perret (ed.), Gröbner Bases, Coding, and Cryptography, pages 307-327, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-93806-4_17
    DOI: 10.1007/978-3-540-93806-4_17
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-93806-4_17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.