IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-79409-7_9.html

Adaptive Sparse Grid Techniques for Data Mining

In: Modeling, Simulation and Optimization of Complex Processes

Author

Listed:
  • H. -J. Bungartz

    (Technische Universität München, Department of Informatics)

  • D. Pflüger

    (Technische Universität München, Department of Informatics)

  • S. Zimmer

    (Technische Universität München, Department of Informatics)

Abstract

It was shown in [GaGTO1] that the task of classification in data mining can be tackled by employing ansatz functions associated to grid points in the (often high dimensional) feature-space rather than using data-centered ansatz functions. To cope with the curse of dimensionality, sparse grids have been used. Based on this approach we propose an efficient finite-element-like discretization technique for classification instead of the combination technique used in [GaGTO1]. The main goal of our method is to make use of adaptivity to further reduce the number of grid points needed. Employing adaptivity in classification is reasonable as the target function contains smooth regions as well as rough ones. Regarding implementational issues we present an algorithm for the fast multiplication of the vector of unknowns with the coefficient matrix. We give an example for the adaptive selection of grid points and show that special care has to be taken regarding the boundary values, as adaptive techniques commonly used for solving PDEs are not optimal here. Results for some typical classification tasks, including a problem from the UCI repository, are presented.

Suggested Citation

  • H. -J. Bungartz & D. Pflüger & S. Zimmer, 2008. "Adaptive Sparse Grid Techniques for Data Mining," Springer Books, in: Hans Georg Bock & Ekaterina Kostina & Hoang Xuan Phu & Rolf Rannacher (ed.), Modeling, Simulation and Optimization of Complex Processes, pages 121-130, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-79409-7_9
    DOI: 10.1007/978-3-540-79409-7_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-79409-7_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.