IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-79409-7_6.html
   My bibliography  Save this book chapter

Approximate Dynamic Programming for Generation of Robustly Stable Feedback Controllers

In: Modeling, Simulation and Optimization of Complex Processes

Author

Listed:
  • Jakob Björnberg

    (University of Cambridge, Center of Mathematical Sciences)

  • Moritz Diehl

    (Optimization in Engineering Center (OPTEC), Electrical Engineering Department (ESAT))

Abstract

In this paper, we present a technique for approximate robust dynamic programming that allows to generate feedback controllers with guaranteed stability, even for worst case disturbances. Our approach is closely related to robust variants of the Model Predictive Control (MPC), and is suitable for linearly constrained polytopic systems with piecewise affine cost functions. The approximation method uses polyhedral representations of the cost-to-go function and feasible set, and can considerably reduce the computational burden compared to recently proposed methods for exact dynamic programming for robust MPC [1, 8]. In this paper, we derive novel conditions for guaranteeing closed loop stability that are based on the concept of a “uroborus”. We finish by applying the method to a state constrained tutorial example, a parking car with uncertain mass.

Suggested Citation

  • Jakob Björnberg & Moritz Diehl, 2008. "Approximate Dynamic Programming for Generation of Robustly Stable Feedback Controllers," Springer Books, in: Hans Georg Bock & Ekaterina Kostina & Hoang Xuan Phu & Rolf Rannacher (ed.), Modeling, Simulation and Optimization of Complex Processes, pages 69-85, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-79409-7_6
    DOI: 10.1007/978-3-540-79409-7_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-79409-7_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.