IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-79409-7_3.html

The gVERSE RF Pulse: An Optimal Approach to MRI Pulse Design

In: Modeling, Simulation and Optimization of Complex Processes

Author

Listed:
  • Christopher K. Anand

    (McMaster University)

  • Stephen J. Stoyan

    (University of Toronto)

  • Tamás Terlaky

    (McMaster University)

Abstract

A Variable Rate Selective Excitation (VERSE) is a type of Radio Frequency (RF) pulse that reduces the Specific Absorption Rate (SAR) of molecules in a specimen. As high levels of SAR lead to increased patient temperatures during Magnetic Resonance Imaging (MRI) procedures, we develop a selective VERSE pulse that is designed to minimize SAR while preserving its duration and slice profile; called the generalized VERSE (gVERSE). After the formulation of a rigorous mathematical model, the nonlinear gVERSE optimization problem is solved via an optimal control approach. Using the state of the art Sparse Optimal Control Software (SOCS), two separate variations of SAR reducing gVERSE pulses were generated. The Magnetic Resonance (MR) signals produced by numerical simulations were then tested and analyzed by an MRI simulator. Computational experiments involved with the gVERSE model provided constant RF pulse levels and had encouraging results with respect to MR signals. The testing results produced by the gVERSE pulse illustrate the potential advanced optimization techniques have in designing RF sequences.

Suggested Citation

  • Christopher K. Anand & Stephen J. Stoyan & Tamás Terlaky, 2008. "The gVERSE RF Pulse: An Optimal Approach to MRI Pulse Design," Springer Books, in: Hans Georg Bock & Ekaterina Kostina & Hoang Xuan Phu & Rolf Rannacher (ed.), Modeling, Simulation and Optimization of Complex Processes, pages 25-48, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-79409-7_3
    DOI: 10.1007/978-3-540-79409-7_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-79409-7_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.