IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-79409-7_29.html
   My bibliography  Save this book chapter

Stability Optimization of Juggling

In: Modeling, Simulation and Optimization of Complex Processes

Author

Listed:
  • Katja Mombaur

    (Universität Heidelberg, IWR)

  • Peter Giesl

    (University of Sussex, Department of Mathematics)

  • Heiko Wagner

    (Universität Münster, Institut für Sportwissenschaft)

Abstract

Biological systems like humans or animals have remarkable stability properties allowing them to perform fast motions which are unparalleled by corresponding robot configurations. The stability of a system can be improved if all characteristic parameters, like masses, geometric properties, springs, dampers etc. as well as torques and forces driving the motion are carefully adjusted and selected exploiting the inherent dynamic properties of the mechanical system. Biological systems exhibit another possible source of self-stability which are the intrinsic mechanical properties in the muscles leading to the generation of muscle forces. These effects can be included in a mathematical model of the full system taking into account the dependencies of the muscle force on muscle length, contraction speed and activation level. As an example for a biological motion powered by muscles, we present periodic single-arm self-stabilizing juggling motions involving three muscles that have been produced by numerical optimization. The stability of a periodic motion can be measured in terms of the spectral radius of the monodromy matrix. We optimize this stability criterion using special purpose optimization methods and leaving all model parameters, control variables, trajectory start values and cycle time free to be determined by the optimization. As a result we found a self-stable solution of the juggling problem.

Suggested Citation

  • Katja Mombaur & Peter Giesl & Heiko Wagner, 2008. "Stability Optimization of Juggling," Springer Books, in: Hans Georg Bock & Ekaterina Kostina & Hoang Xuan Phu & Rolf Rannacher (ed.), Modeling, Simulation and Optimization of Complex Processes, pages 419-432, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-79409-7_29
    DOI: 10.1007/978-3-540-79409-7_29
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-79409-7_29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.