Author
Listed:
- Hoang Duc Minh
(University of Heidelberg, Interdisciplinary Center for Scientific Computing)
- Hans Georg Bock
(University of Heidelberg, Interdisciplinary Center for Scientific Computing)
- Hoang Xuan Phu
(Vietnamese Academy of Science and Technology, Institute of Mathematics)
- Johannes P. Schiöder
(Vietnamese Academy of Science and Technology, Institute of Mathematics)
Abstract
Chemically reacting flows in catalytic monoliths are investigated. The fluid dynamics are modelled by the boundary layer equations (BLEs), which are a large system of parabolic partial differential equations (PDEs) with highly nonlinear boundary conditions arising from the coupling of surface processes with the flow field inside the channel. The BLEs are obtained by simplifying the comprehensive model described by the Navier-Stokes equations and applying the boundary approximation theory. The surface and gas-phase chemical reactions are described by detailed models. The PDEs are semi-discretized using the method of lines leading to a structured system of differential-algebraic equations (DAEs). The DAEs are solved by an implicit method, based on the backward differentiation formulas (BDF). Solution of DAEs by BDF methods requires the partial derivatives of the DAE model functions with respect to the state variables. By exploiting the structure of the DAEs, we develop efficient methods for computation of the partial derivatives in the framework of automatic differentiation and of finite differences. Applying these methods, we obtain a significant improvement in computing time. Moreover, the results also show that for the solution of our DAE systems the computation of the derivatives by automatic differentiation always outperforms the computation of derivatives by finite differences. Numerical results for a practical application of catalytic oxidation of methane with a complex reaction mechanism are presented.
Suggested Citation
Hoang Duc Minh & Hans Georg Bock & Hoang Xuan Phu & Johannes P. Schiöder, 2008.
"Fast Numerical Methods for Simulation of Chemically Reacting Flows in Catalytic Monoliths,"
Springer Books, in: Hans Georg Bock & Ekaterina Kostina & Hoang Xuan Phu & Rolf Rannacher (ed.), Modeling, Simulation and Optimization of Complex Processes, pages 371-380,
Springer.
Handle:
RePEc:spr:sprchp:978-3-540-79409-7_25
DOI: 10.1007/978-3-540-79409-7_25
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-79409-7_25. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.