IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-79409-7_15.html
   My bibliography  Save this book chapter

Fitting Multidimensional Data Using Gradient Penalties and Combination Techniques

In: Modeling, Simulation and Optimization of Complex Processes

Author

Listed:
  • Jochen Garcke

    (Australian National University, Mathematical Sciences Institute)

  • Markus Hegland

    (Australian National University, Mathematical Sciences Institute)

Abstract

Sparse grids, combined with gradient penalties provide an attractive tool for regularised least squares fitting. It has earlier been found that the combination technique, which allows the approximation of the sparse grid fit with a linear combination of fits on partial grids, is here not as effective as it is in the case of elliptic partial differential equations. We argue that this is due to the irregular and random data distribution, as well as the proportion of the number of data to the grid resolution. These effects are investigated both in theory and experiments. The application of modified “optimal” combination coefficients provides an advantage over the ones used originally for the numerical solution of PDEs, who in this case simply amplify the sampling noise. As part of this investigation we also show how overfitting arises when the mesh size goes to zero.

Suggested Citation

  • Jochen Garcke & Markus Hegland, 2008. "Fitting Multidimensional Data Using Gradient Penalties and Combination Techniques," Springer Books, in: Hans Georg Bock & Ekaterina Kostina & Hoang Xuan Phu & Rolf Rannacher (ed.), Modeling, Simulation and Optimization of Complex Processes, pages 235-248, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-79409-7_15
    DOI: 10.1007/978-3-540-79409-7_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-79409-7_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.