IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-77074-9_7.html
   My bibliography  Save this book chapter

Dynamic First-Order Modeling of Phase-Transition Probabilities

In: Traffic and Granular Flow ’07

Author

Listed:
  • Serge P. Hoogendoorn

    (Delft University of Technology)

  • Hans van Lint

    (Delft University of Technology)

  • Victor Knoop

    (Delft University of Technology)

Abstract

Summary Modeling breakdown probabilities or phase transition probabilities is an important issue when assessing and predicting the reliability of traffic flow operations. Looking at empirical spatio-temporal patterns, these probabilities clearly are not only a function of the local prevailing traffic conditions (density, speed), but also of time and space. For instance, the probability that start-stop wave occurs generally increases when moving upstream away from the bottleneck location. The dynamics of the breakdown probabilities are the topic of this paper. We propose a simple partial differential equation that can be used to model the dynamics of breakdown probabilities, in conjunction with a first-order model. The main assumption is that the breakdown probability dynamics satisfy the way information propagates in a traffic flow, i.e. they move along with the characteristics. The main result is that we can reproduce the main characteristics of the breakdown probabilities, such as observed by Kerner. This is illustrated by means of two examples: free flow to synchronized flow (F-S transition) and synchronized to jam (S-J transition). We show that the probability of an F-S transition increases away from the on-ramp in the direction of the flow; the probability of an S-J transition increases as we move upstream in the synchronized flow area. Note that all the examples shown in the paper are deterministic.

Suggested Citation

  • Serge P. Hoogendoorn & Hans van Lint & Victor Knoop, 2009. "Dynamic First-Order Modeling of Phase-Transition Probabilities," Springer Books, in: Cécile Appert-Rolland & François Chevoir & Philippe Gondret & Sylvain Lassarre & Jean-Patrick Lebacq (ed.), Traffic and Granular Flow ’07, pages 85-92, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-77074-9_7
    DOI: 10.1007/978-3-540-77074-9_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-77074-9_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.