IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-74739-0_38.html
   My bibliography  Save this book chapter

Adaptive Analysis of Bifurcation Points of Shell Structures

In: High Performance Computing in Science and Engineering `07

Author

Listed:
  • E. Ewert

    (Universität Karlsruhe (TH), Institut für Mechanik)

  • K. Schweizerhof

    (Universität Karlsruhe (TH), Institut für Mechanik)

Abstract

In recent years many procedures for stability investigations based on the Finite Element Method have been developed to compute the so-called stability points of structures in order to judge the stability. However, in engineering practice predominantly knock-down factors based on experiments are used for the design loads. The reason for such a procedure is the hard to quantify sensitivity of shell structures – especially of cylindrical shells – against perturbations like geometrical and loading imperfections or imperfections in boundary conditions. The standard procedure as also proposed in design rules is based on the computation of the limit load taking into account the modification of the bifurcation load resp. the snap-through load due to geometrical imperfections. Thus, the eigenvalueproblem for stability points have to be computed very accurately. In the present contribution an adaptive h-refinement procedure is taken for the solution using low order shell elements. The algorithm is partially based on the well-known a-posteriori error estimator of Zienkiewicz and Zhu [Zie92] with the stresses computed using the eigenvectors instead of displacement vectors, as e.g. proposed by Stein et al. [Stein94].

Suggested Citation

  • E. Ewert & K. Schweizerhof, 2008. "Adaptive Analysis of Bifurcation Points of Shell Structures," Springer Books, in: Wolfgang E. Nagel & Dietmar Kröner & Michael Resch (ed.), High Performance Computing in Science and Engineering `07, pages 563-569, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-74739-0_38
    DOI: 10.1007/978-3-540-74739-0_38
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-74739-0_38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.