IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-74496-2_36.html
   My bibliography  Save this book chapter

SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator

In: Monte Carlo and Quasi-Monte Carlo Methods 2006

Author

Listed:
  • Mutsuo Saito

    (Hiroshima University, Dept. of Math.)

  • Makoto Matsumoto

    (Hiroshima University, Dept. of Math.)

Abstract

Summary Mersenne Twister (MT) is a widely-used fast pseudorandom number generator (PRNG) with a long period of 219937 - 1, designed 10 years ago based on 32-bit operations. In this decade, CPUs for personal computers have acquired new features, such as Single Instruction Multiple Data (SIMD) operations (i.e., 128-bit operations) and multi-stage pipelines. Here we propose a 128-bit based PRNG, named SIMD-oriented Fast Mersenne Twister (SFMT), which is analogous to MT but making full use of these features. Its recursion fits pipeline processing better than MT, and it is roughly twice as fast as optimised MT using SIMD operations. Moreover, the dimension of equidistribution of SFMT is better than MT. We also introduce a block-generation function, which fills an array of 32-bit integers in one call. It speeds up the generation by a factor of two. A speed comparison with other modern generators, such as multiplicative recursive generators, shows an advantage of SFMT. The implemented C-codes are downloadable from http ://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html.

Suggested Citation

  • Mutsuo Saito & Makoto Matsumoto, 2008. "SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator," Springer Books, in: Alexander Keller & Stefan Heinrich & Harald Niederreiter (ed.), Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 607-622, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-74496-2_36
    DOI: 10.1007/978-3-540-74496-2_36
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-74496-2_36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.