IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-74339-2_7.html
   My bibliography  Save this book chapter

Analysis of a New MPFA Formulation for Flow Problems in Geologically Complex Media

In: Mathematical Modeling, Simulation, Visualization and e-Learning

Author

Listed:
  • A. Njifenjou
  • M. Mbehou

Abstract

This work analyzes some mathematical aspects of a new Multi-Point Flux Approximation (MPFA) formulation for flow problems. This MPFA formulation has been developed in [12, 13] for quadrilateral grids and [10] for unstructured grids. Our MPFA formulation displays capabilities for handling flow problems in geologically complex media modelled by spatially varying full permeability tensor. However in this work, we focus our attention on the case of anisotropic homogeneous porous media. In this framework, the proposed MPFA formulation leads to a well-posed discrete problem which is a linear system whose associated matrix is symmetric and positive definite, even if the permeability tensor governing the flow is only positive definite. Following the spirit of the finite element theory, we have introduced the concept of globally continuous and piecewise linear approximate solution. The convergence analysis of this solution is strongly based upon another concept: the weak approximate solution. Stability and convergence results for the weak approximate solution are proven for L2- and L∞-norm, and for a discrete energy norm as well. These results permit to prove some error estimates related to the globally continuous and piecewise linear approximate solution.

Suggested Citation

  • A. Njifenjou & M. Mbehou, 2008. "Analysis of a New MPFA Formulation for Flow Problems in Geologically Complex Media," Springer Books, in: Dialla Konaté (ed.), Mathematical Modeling, Simulation, Visualization and e-Learning, pages 91-105, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-74339-2_7
    DOI: 10.1007/978-3-540-74339-2_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-74339-2_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.