IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-74238-8_7.html
   My bibliography  Save this book chapter

Rigid Registration of Medical Images by Maximization of Mutual Information

In: From Nano to Space

Author

Listed:
  • Rainer Lachner

    (BrainLAB AG)

Abstract

Multi-modal medical image registration is an important capability for surgical applications. The objective of registration is to obtain a spatial transformation from one image to another by which a similarity measure is optimized between the images. Recently, new types of solutions to the registration problem have emerged, based on information theory. In particular, the mutual information similarity measure has been used to register multi-modal medical images. In this article, a powerful, fully automated and highly accurate registration method developed at BrainLAB AG is described. Key components of image registration techniques are identified and a summary presented of the information-theoretical background that leads to the mutual information concept. In order to locate the maximum of this measure, a dedicated optimization method is presented. A derivative-free algorithm based on trust regions specially designed for this application is proposed. The resulting registration technique is implemented as part of BrainLAB’s commercial planning software packages BrainSCAN™ and iPlan®.

Suggested Citation

  • Rainer Lachner, 2008. "Rigid Registration of Medical Images by Maximization of Mutual Information," Springer Books, in: Michael H. Breitner & Georg Denk & Peter Rentrop (ed.), From Nano to Space, pages 71-90, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-74238-8_7
    DOI: 10.1007/978-3-540-74238-8_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-74238-8_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.