IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-69777-0_21.html
   My bibliography  Save this book chapter

Constraints Coefficients in hp-FEM

In: Numerical Mathematics and Advanced Applications

Author

Listed:
  • A. Schröder

    (Humboldt Universität zu Berlin, Department of Mathematics)

Abstract

Continuity requirements on irregular meshes enforce a proper constraint of the degrees of freedom that correspond to hanging nodes, edges or faces. This is achieved by using so-called constraints coefficients which are obtained from the appropriate coupling of shape functions. In this note, a general framework for determining the constraints coefficients of tensor product shape functions is presented and its application to shape functions using integrated Legendre or Gauss-Lobatto polynomials. The constraints coefficients in the one-dimensional case are determined via recurrence relations. The constraints coefficients in the multi-dimensional case are obtained as products of these coefficients. The coefficients are available for arbitrary patterns of subdivisions.

Suggested Citation

  • A. Schröder, 2008. "Constraints Coefficients in hp-FEM," Springer Books, in: Karl Kunisch & Günther Of & Olaf Steinbach (ed.), Numerical Mathematics and Advanced Applications, pages 183-190, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-69777-0_21
    DOI: 10.1007/978-3-540-69777-0_21
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-69777-0_21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.