IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-69179-2_13.html
   My bibliography  Save this book chapter

Measuring and Modeling Risk Using High-Frequency Data

In: Applied Quantitative Finance

Author

Listed:
  • Wolfgang Härdle

    (Humboldt-Universität zu Berlin, CASE, Center for Applied Statistics and Economics)

  • Nikolaus Hautsch

    (Humboldt-Universität zu Berlin, CASE, Center for Applied Statistics and Economics)

  • Uta Pigorsch

    (University of Mannheim, Department of Economics)

Abstract

Volatility modelling is the key to the theory and practice of pricing financial products. Asset allocation and portfolio as well as risk management depend heavily on a correct modelling of the underlying(s). This insight has spurred extensive research in financial econometrics and mathematical finance. Stochastic volatility models with separate dynamic structure for the volatility process have been in the focus of the mathematical finance literature, see Heston (1993) and Bates (2000), while parametric GARCH-type models for the returns of the underlying(s) have been intensively analyzed in financial econometrics. The validity of these models in practice though depends upon specific distributional properties or the knowledge of the exact (parametric) form of the volatility dynamics. Moreover, the evaluation of the predictive ability of volatility models is quite important in empirical applications. However, the latent character of the volatility poses a problem. To what measure should the volatility forecasts be compared to? Conventionally, the forecasts of daily volatility models, such as GARCH-type or stochastic volatility models, have been evaluated with respect to absolute or squared daily returns. In view of the excellent in-sample performance of these models, the forecasting performance, however, seems to be disappointing.

Suggested Citation

  • Wolfgang Härdle & Nikolaus Hautsch & Uta Pigorsch, 2009. "Measuring and Modeling Risk Using High-Frequency Data," Springer Books, in: Wolfgang K. Härdle & Nikolaus Hautsch & Ludger Overbeck (ed.), Applied Quantitative Finance, edition 2, chapter 13, pages 275-293, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-69179-2_13
    DOI: 10.1007/978-3-540-69179-2_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-69179-2_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.